M1.	(a)	noi	rth (pole) accept N	
		north	h (pole) both needed for mark	1
	(b)	reve	erses accept changes direction	1
	(c)	(i)	first finger: (direction of) (magnetic) field	1
			second finger: (direction of) (conventional) current	1
		(ii)	into (plane of the) paper	1
		(iii)	less current in wire accept less current / voltage / more resistance / thinner wire	1
			weaker field allow weaker magnets / magnets further apart do not accept smaller magnets	1
			rotation of magnets (so) field is no longer perpendicular to wire	1

- (d) (i) reverse one of the magnets do **not** accept there are no numbers on the scale
 - (ii) systematic or zero error accept all current values will be too big accept it does not return to zero accept it does not start at zero

1

(b) (i) wire kicks further (forward) accept moves for kicks accept moves more accept 'force (on the wire) increased'

1

1

 (ii) wire kicks back(wards) / into (the space in) the (horseshoe) magnet accept moves for kicks accept 'direction of force reversed'

[3]

	(creating) a force (acting) on XY / wire / upwards reference to Fleming's left hand rule is insufficient	1
(ii)	motor (effect)	1
(iii)	vibrate / move up and down	1
	5 times a second only scores if first mark point scores allow for 1 mark only an answer 'changes direction 5 times a second'	1
0.00	5 allow 1 mark for calculating moment of the weight as 0.04 (Ncm)andallow 1 mark for correctly stating principle of moments or allow 2 marks for correct substitution ie F × 8 = 2 × 0.02 or F × 8 = 0.04	3

[8]

1

(b)

(b) increase the strength of the magnet

or

increase the current

(c) $4.8 \times 10^{-4} = F \times 8 \times 10^{-2}$

$$F = 6 \times 10^{-3} (N)$$

$$6 \times 10^{-3} = B \times 1.5 \times 5 \times 10^{-2}$$

$$B = \frac{6 \times 10^{-3}}{7.5 \times 10^{-2}}$$

 $B = 8 \times 10^{-2} \text{ or } 0.08$

allow 8×10^{-2} or 0.08 with no working shown for 5 marks a correct method with correct calculation using an incorrect value of F gains 3 marks

Tesla

do not accept t

[8]

1

1

1

1

(b) 15.40 ×10² or

1540

allow **1** mark for correct substitution, ie

$$8.75 \times 10^{4} = \frac{F}{1.76 \times 10^{-2}}$$
or
$$F = 8.75 \times 10^{4} \times 1.76 \times 10^{-2}$$
or
$$F = 8.75 \times 10^{4} \times 1.76 \times 10^{-2}$$
or
$$F = 87500 \times 0.0176$$

2

1

(c) any **one** environmental **advantage**:

stating a converse statement is insufficient, or a disadvantage of the usual oil, ie the usual oil is non-renewable

plant oil is renewable

using plant oil will conserve (limited) supplies **or** extend lifetime of the usual / crude oil.

plant oil releases less carbon dioxide (when it is being produced / processed)

plant oil will add less carbon dioxide to the atmosphere (when it is being produced / processed, than the usual oil)

plant oil removes carbon dioxide from **or** adds oxygen to the air when it is growing

stating that plant oil is carbon neutral is insufficient

1

(d) (the current flowing through the coil) creates a magnetic field (around the coil)

(this magnetic field) interacts with the permanent magnetic field or current carrying conductor is in a (permanent) magnetic field *it must be clear which magnetic field is which*

this produces a (resultant) force (and coil / cone moves)

when the direction of the current changes, the direction of the force changes to the opposite direction

accept for **2** marks the magnetic field of the coil interacts with the permanent magnetic field

1

1